
C
O

R
V

IN
U

S
 E

C
O

N
O

M
IC

S
 W

O
R

K
IN

G
  
P

A
P

E
R

S

http://unipub.lib.uni-corvinus.hu/3733

CEWP 03/2018

Could crowdsourced financial 
analysis replace the equity 
research by investment banks?

by 

Karl Arnold Kommel, 
Martin Sillasoo, 
Ágnes Lublóy



1 

COULD CROWDSOURCED FINANCIAL ANALYSIS REPLACE THE EQUITY RESEARCH

BY INVESTMENT BANKS? 

Karl Arnold Kommel1 

Stockholm School of Economics in Riga 

Martin Sillasoo 2 

Stockholm School of Economics in Riga 

Ágnes Lublóy3 

 Department of Finance and Accounting, Stockholm School of Economics in Riga and 

Department of Finance, Corvinus University of Budapest  

October 17, 2018. 

A revised version of this paper has been published in Finance Research Letters: 

Karl Arnold Kommel, Martin Sillasoo, Ágnes Lublóy. (2018). Could crowdsourced financial 

analysis replace the equity research by investment banks? Finance Research Letters. Published 

online ahead of print 11 August 2018. doi: https://doi.org/10.1016/j.frl.2018.08.007 

1 Strēlnieku iela 4a, Riga LV1010, Latvia, kakommel@sserida.edu (email) 

Strēlnieku iela 4a, Riga LV1010, Latvia, msillasoo.sseriga.edu (email)  

3 Strēlnieku iela 4a, Riga LV1010, Latvia, +371 67015841 (tel), +371 67830249  (fax), agnes.lubloy@sseriga.edu (email) and agnes.lubloy@uni-corvinus.hu 



2 

 

Abstract 

 

Equity research is gaining popularity in crowd-sourced information sharing platforms. This study 

analyses S&P 100 companies stock recommendations and user-contributed articles published on 

Seeking Alpha platform over a three-year period; and investigates whether investment banks’ 

rating consensus or the sentiment of single-ticker articles published by Seeking Alpha contributors 

can predict future abnormal returns more accurately. We find that both analyst groups 

underperform the market. Trading strategies based on the sentiment of the opinion articles perform 

worse than trading strategies designed around the recommendations of security analysts. Analyst 

recommendations are expected to remain relevant, there is no immediate pressure from crowd-

sourced equity research for changing the business model. 

 

JEL codes: C22, G11, G14, G24 

 

Keywords: stock recommendation; investment bank; crowdsourced financial analysis; sentiment; 

stock returns  
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1. Introduction 

 

New types of services, such as peer-to-peer lending, crowdfunding and robo-advisory disrupt the 

conventional business models in the financial industry. This study analyses the impact of crowd-

sourced investment advice; a new investment advisory service which may render the dominance of 

investment banks in the field. Equity research is seeing a rise in crowd-sourced information sharing 

platforms that could shake the industry by making analysis and information more accessible to the 

masses; on social media platforms information is shared faster and received by a larger crowd. A 

prominent example for such platform is Seeking Alpha, where both professional as well as amateur 

investors may present their analysis in the form of opinion articles. 

This research aims at comparing whether analyst recommendations or Seeking Alpha sentiment 

can predict future excess stock returns more accurately. In particular, we investigate whether the 

sentiment of single-ticker articles published by Seeking Alpha contributors or investment banks’ 

rating consensus is able to predict future abnormal returns more precisely. The novelty of the 

research lies in judging the predictive ability of contributions on Seeking Alpha platform and 

investment banks’ equity research jointly. Previous research has covered the performance of social 

media platforms and investment banks’ equity research separately; this study creates a link between 

the two sources of information for the first time in the literature. 

Seeking Alpha is one of the largest social media platforms offering crowd-sourced investment 

advice; this platform is the top destination for stock market opinions and analyses on the internet, 

and it is widely read by finance professionals and dedicated individual investors. The platform 

offers everyone the possibility to share views on stocks in the form of opinion articles. The site has 

more than four million registered users, over ten million unique monthly visitors, it covers more 

than 8 000 stocks, and it has over 15 000 contributing authors (Seeking Alpha, 2017). 

Research on the performance of investment banks’ recommendations generally suggests that 

investors can earn abnormal returns by trading on valuable information provided by analysts 

(Stickel, 1995; Womack, 1996; Barber et al. 2001; Moshirian, Ng, & Wu, 2009). Only a few studies 

report that investors cannot earn positive abnormal returns by following analyst recommendations 

(Barber et al. 2003; Boni & Womack, 2006). Empirical evidence on the performance of social 

media platforms is mixed. On the one hand, several studies suggest that investors cannot earn 

abnormal returns by following the advice of social media sites (Dewally, 2000; Tumarkin & 

Whitelaw, 2001; Antweiler & Frank, 2004; Sabherwal, Sarkar & Zhang 2011). On the other hand, 

numerous studies show that articles posted on social media sites have the ability to predict future 

stock performance (Wysocki, 1999; Bollen, Mao and Zheng, 2011; Chen, De, Hu & Hwang, 2014). 

Equity research by investment banks and brokerage firms has been a substantial and important 

source of information for both retail and institutional investors. There are several reasons why 

specialized social media platforms might break the exclusivity currently enjoyed by investment 

banks in equity research. First, social media platforms offer a quick and cheap way of gathering 

information about stocks. Second, free-of-charge information about stocks reaches a wide audience 

including many potential investors; articles posted on these platforms are often shared on other 

platforms, including the traditional media. Third, social media platforms became professional news 

and analysis aggregators. The platforms are used by both private retail investors as well as 

professionals; the U.S. Securities and Exchange Commission had to issue a risk alert reminding 
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registered investment advisors to follow compliance and disclosure regulations (SEC, 2012). As 

several professionals publish their views on social media sites, the analysis might be as reliable and 

valuable as the one disclosed by investment banks. Fourth, people having limited time to analyse 

stocks, tend to purchase the stocks they hear about resulting in naïve buying or selling pressure 

(Barber & Loeffler,1993; Barber & Ordean, 2008; Dougal et al. 2012). Fifth, recommendations of 

investment banks and brokerage firms have been associated with conflict of interest on multiple 

occasions, rendering the reliability of their stock recommendations (Michaely & Womack, 1999; 

Barber, Lehavy & Trueman, 2007; Agrawal & Chen, 2008; Kadan et al. 2009). All in all, it is worth 

investigating whether the model of user-contributed investment recommendations performs as 

good as investment banks’ analyst recommendations. 

 

2. Data and methodology 

 

2.1 Data 

The sample consists of stocks in Standard & Poor's 100 index as of 31 October 2016. S&P 100 

tracks the largest, most liquid stocks across multiple industry groups. These leading stocks are 

widely known and being covered in several articles by both investment banks and Seeking Alpha 

contributors.  

The sentiment projected in Seeking Alpha articles is based on single-ticker articlesarticles 

assessing a single company rather than multiple companies. In total, 25 986 single-ticker articles 

were retrieved from SeekingAlpha.com covering a three-year period (January 2014 to December 

2016). The most frequently covered stock was Apple with 2 117 articles published in three years, 

followed by General Electric with 813 articles and Intel with 805 articles (Online Supplementary 

Material, Table 1). Median number of articles retrieved per company was 148. Despite high market 

capitalization, some companies did not attract wide interest from Seeking Alpha contributors and 

followers. 

 

2.2 Seeking Alpha sentiment variable 

For each article published on Seeking Alpha, a numerical value for the mood sentiment is extracted 

by performing a contextual analysis. RapidMiner’s text mining tools is used for the contextual 

analysis. As a first step, we identify the total number of words (positive, negative and neutral) in 

each article. Afterwards, we compare the content of each article with the pre-produced lists of 

negative and positive words to identify the total number of either negative or positive words in the 

article. Similar to Chen et. al. (2014), we use the glossary of Loughran and McDonald (2014) which 

was specifically created for researching sentiment in financial markets. Finally, we compute the 

negative sentiment of each article by dividing the number of negative words with the total number 

of words. 

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴 =
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑𝑠

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑𝑠+𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑𝑠+𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝑤𝑜𝑟𝑑𝑠
  Eq. 1 
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Sentiment SA variable ranges from 0 to 1; the higher the fraction of negative words, the higher the 

sentiment variable. Several stocks are not covered frequently by contributors; articles are written 

every couple of weeks or even less frequently. As a result, Seeking Alpha sentiment variable 

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴𝑖,𝑡 is computed as an average of sentiment values of each article written for each 

stock i in quarter t. 

 

2.3 Investment bank consensus variable 

Daily data on investment bank stock recommendations was obtained from Thomson Reuters Eikon 

from January 2014 to December 2016. Investment bank analysts may rate each stock in the sample 

on a scale of 1 to 5 as follows: 1 (sell), 2 (underperform), 3 (hold), 4 (buy) and 5 (strong buy). It is 

reasonable to assume that if analysts leave the rating unchanged, it does not convey new 

information to the readers, whereas change in recommendation indicates change in the analyst’s 

sentiment. In this research, in order to measure the change in the sentiment in a more pronounced 

way only those recommendations were included where the analysts changed the rating compared 

to the previous one. To allow comparison with the sentiment variable, analyst ratings are 

normalized to 0,1. The investment bank recommendation variable (𝐼𝐵 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑖,𝑡) is 

calculated by considering all ratings available by analysts on Thomson Reuters Eikon for stock i 

in period t: 

𝐼𝐵 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 =
(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑎𝑡𝑖𝑛𝑔−𝑀𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡)

(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑎𝑡𝑖𝑛𝑔−𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑎𝑡𝑖𝑛𝑔)
 Eq. 2 

In Eq. 2 the maximum rating is 5, whereas the minimum is 1. By construction, if the investment 

banks’ consensus on the rating deceases in period t as compared to the period t-1, variable IB 

Consensus increases.  

 

2.4 Time series regression with Newey-West standard errors 

Time-series regression models are used for investigating whether the Seeking Alpha sentiment and 

the investment bank consensus variables are statistically significant in explaining the abnormal 

returns of stocks. The regression model without control variables is specified as follows: 

𝐴𝑅𝑖,𝑡+1 = 𝛽0 + 𝛽1𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴𝑖,𝑡 +  𝛽2𝐼𝐵 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑖,𝑡 + 𝜖𝑖,𝑡, Eq.3 

where 𝐴𝑅𝑖,𝑡+1 is the 3-month abnormal return of stock i in time period t+1 calculated as a sum of 

daily excess returns based on Fama-French 3-factor model. Similar to several papers in empirical 

asset pricing literature, monthly overlapping values are used (Fama & French, 1988; Howe et al., 

2009). The Newey-West correction is applied to overcome potential autocorrelation and 

conditional heteroscedasticity in the regressions (Newey & West, 1987). Assuming advice in line 

with company fundamentals, if the value of 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴 and/or the value of  𝐼𝐵 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 

increases, that is, the sentiment is more negative and/or the investment banks’ rating is less 

favourable, the stock is expected to underperform the market and has negative excess returns. In 

contrast, if the sentiment is more positive and/or the investment banks’ rating is more favourable 
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(variables 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴 and/or  𝐼𝐵 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 decreases), the stock is expected to have positive 

abnormal returns. Thus, coefficients β1 and β2 shall be negative. To test for the outperformance of 

particular analyst groups (contributors on Seeking Alpha versus investment banks analysts), t-tests 

are conducted on the equality of regression coefficients. 

Control variables are selected by relying on the model of Howe et al. (2009); the authors assess the 

predictive content of aggregate analyst recommendations while controlling for macroeconomic 

variables identified as predictors of future market excess returns in asset pricing literature (Fama 

& Schwert, 1977; Keim & Stambaugh, 1986; Campbell, 1987; Fama & French, 1988, 1999). The 

model of Howe et al. (2009) is modified and fitted to the firm-specific data of this research. Instead 

of two macroeconomic control variables, we include two stock specific control variables: the 

default spread corporate bond variable is replaced by the cost of debt of each stock, while market 

dividend yields are replaced by individual dividend yields. Control variables are defined in Table 

1. The regression model with control variables is specified as follows: 

𝐴𝑅𝑡,𝑡+1 = 𝛽0 + 𝛽1𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴𝑖,𝑡 + 𝛽2𝐼𝐵 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑖,𝑡 + 𝛽3𝐷𝑖𝑣 𝑌𝑖𝑒𝑙𝑑𝑖,𝑡 + 𝛽4𝑇𝑏𝑖𝑙𝑙𝑡 +
𝛽5𝑇𝑠𝑝𝑟𝑒𝑎𝑑𝑡 + 𝛽6𝐶𝑜𝐷𝑖,𝑡 + 𝜖𝑖,𝑡           Eq. 4 

 

Table 1: Control variables: abbreviation and definitions 

Abbreviation Definition 

𝐷𝑖𝑣 𝑌𝑖𝑒𝑙𝑑𝑖,𝑡 Average dividend yield for time period t of stock i.  

𝑇𝑏𝑖𝑙𝑙𝑡 Average three-month treasury bill rate for the time period t.  

𝑇𝑠𝑝𝑟𝑒𝑎𝑑𝑡 
Average 10-year US bond yield less the 3-month US treasury bill rate for time 

period t.  

𝐶𝑜𝐷𝑖,𝑡 Average cost of debt of stock i for the time period t.  

Data for the control variables were retrieved from Thomson Reuters Eikon on 26.02.2017. 

 

Robustness tests are performed by modifying the variable of 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴 as defined in Eq. 5. 

This sentiment measure considers the words being identified as either positive or negative in each 

article only. 

 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡2 𝑆𝐴 =
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑𝑠

(𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑𝑠+𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑑𝑠)
 Eq. 5 

 

3. Results and discussion 

 

Ten stocks were removed from the dataset due to lack of data; over multiple quarters there were 

either no articles published on Seeking Alpha or no ratings provided by the analysts. In addition, 

regression diagnostics were performed to identify outliers. Regression diagnostics included 

analysing residual-versus-fitted, added-variable, component-plus-residual, leverage-versus-

residual-squared plots, quantile plots and Cook’s distance (Chen, Ender, Mitchell & Wells, 2003). 

The Cook’s distance values revealed eight observations with high distortive effect on the regression 

estimates; these observations were removed from the dataset. 
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For each stock, the mean length of articles, the mean number of positive versus negative words, 

and the median quarterly abnormal returns are displayed in the Online Supplementary Material, 

Table 1. 

Bivariate correlation analysis revealed that none of the independent variables shall be excluded 

from the multiple regression analysis; the correlation between the variables of 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴 and 

𝐼𝐵 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 is very weak (0.14). The results of the time series regressions using Newey-West 

estimators are displayed in Table 2. The model without the control variables (Eq. 3) shows that 

both analyst groups (contributors on Seeking Alpha versus investment banks analysts) have 

statistically significant impact on the following quarter’s excess returns with positive β1 and β2 

coefficients. If negative news is revealed about the company, as a result of which the negative 

sentiment of the articles increased, and/or the investment banks’ rating became less favourable, the 

results signal that investors should buy stocks; they are expected to earn positive abnormal returns. 

Thus, investors cannot outperform the market by trading based on the sentiment extracted from 

Seeking Alpha articles or following the advice of investment bank analysts. The trading strategy 

based on the sentiment of Seeking Alpha articles performs significantly worse than the one based 

on analyst recommendations. 

 

Table 2. Time series regression with Newey-West standard errors  
 

Regression without 

control variables 

Regression with 

control variables 

Constant -0.061 (***) -0.097 (***) 

Sentiment SA 2.006 (***) 1.843 (***) 

IB Consensus 0.044 (**) 0.034 

CoD  -0.008 

Div Yield  0.006 (*) 

T-bill  5.439 

T-spread  1.807 

Test if 𝑺𝒆𝒏𝒕𝒊𝒎𝒆𝒏𝒕 𝑺𝑨 = 𝑰𝑩 𝑪𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔  

Prob > F (0.000***) (0.000***) 

*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level 

 

When control variables are added to the regression, the coefficient of 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴 has slightly 

decreased, while the coefficient for the 𝐼𝐵 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 variable became insignificant. The 

probability of 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴 being equal or smaller than 𝐼𝐵 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 is still negligible. None 

of the control variables provide information regarding the excess returns. This result is consistent 

with the efficient market hypothesis; publicly available information is embedded in the stock price. 

Robustness tests are performed by modifying the 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝐴 variable (Table 3). The test results 

confirm the above findings; Seeking Alpha contributors are worse in predicting future stock returns 

than investment bank analysts. 
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Table 3. Robustness test: time series regression with Newey-West standard errors  
 

Regression without 

control variables 

Regression with 

control variables 

Constant -0.070 (***) -0.099 (***) 

Sentiment2 SA 0.114 (***) 0.104 (***) 

IB Consensus 0.048 (**) 0.035 (*) 

CoD 
 

-0.010 

Div Yield 
 

0.006 (*) 

T-bill 
 

5.926 

T-spread 
 

1.727 

Test if 𝑺𝒆𝒏𝒕𝒊𝒎𝒆𝒏𝒕 𝑺𝑨 = 𝑰𝑩 𝑪𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔  

Prob > F (0.000***) (0.000***) 

*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level 

 

The underperformance of Seeking Alpha sentiment is in line with studies suggesting that investors 

cannot earn excess returns by forming a trading strategy based on opinion articles (Dewally, 2000; 

Tumarkin & Whitelaw, 2001; Antweiler & Frank, 2004; Sabherwal, Sarkar & Zhangm 2011). Our 

findings, however, contradict the results of Chen et al. (2014); the authors find that views expressed 

in Seeking Alpha articles predict future stock returns over multiple time periods. Different research 

designs might explain the contradicting findings; Chen et al. (2014) investigate the performance of 

value weighted portfolios, while this research analysed the performance of single stocks.  

The underperformance of investment bank analysts contradicts previous literature (Stickel, 1995; 

Womack, 1996; Barber et al. 2001; Moshirian, Ng, & Wu, 2009). The significance of the respective 

coefficients in our models with control variables is, however, quite low: it is either insignificant 

(Table 2) or significant at 10% level only (Table 3). Diverging findings are most probably 

attributable to aggregation; recommendations were averaged over three-month period hindering 

the measurement of the immediate impact, an approach commonly adopted in previous studies. 

This aggregation was nevertheless inevitable for comparing analyst recommendations with the 

sentiment of opinion articles. 

For the first time in the literature, this research provides empirical evidence of investment bank 

analysts delivering superior information as compared to Seeking Alpha sentiment; their negative 

excess returns are smaller. The large negative excess returns of investors trading on the sentiment 

of articles published by Seeking Alpha contributors signal that investors might profit from a 

contrarian trading strategy, trading against the Seeking Alpha sentiment. 

Finally, several caveats should be noted. First, as several stocks in S&P 100 index were not covered 

widely by Seeking Alpha contributors, we pooled data together and analysed the three-month 

average sentiment. Second, this analysis is based on large-cap companiesthe conclusions might 

not be generalizable for the entire US market and for global stock markets. For smaller firms, 

information from analysts and contributors might be more valuable as it is harder to obtain. Third, 

causality was not tested due to limited number of observations and uneven groups. Fourth, in each 
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quarter change in investment bank recommendations might have influenced the Seeking Alpha 

sentimentinfluence being disregarded in this study. 

 

4. Conclusions 

 

In this research we investigated whether the sentiment of articles published by Seeking Alpha 

contributors and recommendations from investment bank analysts can predict future excess stock 

returns. We showed that both analyst groups underperform the market; investors trading in line 

with the sentiment reflected in Seeking Alpha articles would earn larger negative excess return than 

investors following the recommendations of investment bank analysts. As a result, crowd-sourced 

equity research does not challenge the dominant role of investment banks and brokerages in the 

equity research market. 
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Appendix, Table A1. Descriptive statistics of the Seeking Alpha dataset 

Ticker 
No. 

articles 

Article 

length 

(mean) 

Number of 

negative 

words 

(mean) 

Number of 

positive 

words 

(mean) 

Quarterly 

abnormal 

return 

(median) 

 Ticker 
No. 

articles 

Article 

length 

(mean) 

Number of 

negative 

words 

(mean) 

Number of 

positive 

words 

(mean) 

Quarterly 

abnormal 

return 

(median) 

AAPL 2117 653.6 15.6 13.6 0.4%  JPM 270 502.4 15.6 12.3 1.6% 

ABBV 133 651 14 13.6 2.7%  KMI 556 593.2 16.3 11.2 1.2% 

ABT 99 596.2 11.9 14.3 2.4%  KO 381 632.5 15.3 15.4 -2.2% 

AGN 108 689.7 20.2 11.6 -0.6%  LLY 63 562.6 14.6 11.5 1.7% 

AIG 184 504.3 15.5 13.6 0.5%  LMT 121 584.7 13.3 15.7 -1.0% 

AMGN 126 791.3 19.4 19.7 -2.8%  LOW 112 542.8 9.9 20 -1.4% 

AMZN 801 580.4 13.4 12.6 6.5%  MA 94 575.1 11.9 14.9 -0.9% 

AXP 131 564 16.9 14.7 1.6%  MCD 581 548.9 15.9 12.8 1.6% 

BA 451 222.9 4.7 4.8 2.0%  MDLZ 75 635.4 15.5 19.2 -0.1% 

BAC 761 538.8 19.8 12.2 0.3%  MDT 67 551.2 10.3 14.4 -2.7% 

BIIB 95 735.7 17.6 17.4 -2.6%  MET 57 485.2 13.6 11.6 -2.5% 

BLK 43 602 10 16.6 -1.4%  MMM 171 591.3 12.4 17.6 -1.9% 

BMY 88 629.2 14.5 14.9 4.3%  MO 271 589.9 11.4 14.4 0.9% 

C 375 545.8 19.3 11.9 1.6%  MON 93 599.9 15.3 14.1 -2.2% 

CAT 266 553.1 20.5 13.5 -0.7%  MRK 80 576.6 13.6 12.7 1.0% 

CELG 98 818.4 18.5 20.6 3.0%  MS 75 551.9 15.3 14.1 1.8% 

CL 114 648.7 12.4 18.1 -0.7%  MSFT 755 568 11.6 13.8 3.3% 

CMCSA 182 527.7 10.1 12.5 0.9%  NKE 308 550.5 10.7 16.9 0.4% 

COP 378 552 14.9 12.8 -1.2%  ORCL 197 592.7 13.5 12.9 -3.8% 

COST 171 554.3 9.9 16.2 1.9%  OXY 105 579.1 11.9 14.8 0.0% 

CSCO 328 588.2 13.2 12.9 -1.2%  PCLN 130 539.1 9.7 14.9 -4.3% 

CVS 138 609.7 10 17.4 -1.7%  PEP 215 632.3 12.3 16.5 0.3% 

CVX 426 582 16 12.7 -2.6%  PFE 171 615.3 14.4 14.6 -4.2% 
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Ticker 
No. 

articles 

Article 

length 

(mean) 

Number of 

negative 

words 

(mean) 

Number of 

positive 

words 

(mean) 

Quarterly 

abnormal 

return 

(median) 

 Ticker 
No. 

articles 

Article 

length 

(mean) 

Number of 

negative 

words 

(mean) 

Number of 

positive 

words 

(mean) 

Quarterly 

abnormal 

return 

(median) 

DD 97 576.9 17 13.1 -1.9%  PG 321 620.4 16.3 17.2 0.5% 

DIS 494 589.5 12.6 15.9 1.5%  PM 279 573.9 16.2 14.7 0.6% 

DOW 93 596.4 12.9 16.6 0.5%  QCOM 340 586.8 14.8 13.6 -2.9% 

DUK 99 660.7 12.2 18.3 3.9%  RTN 51 557.2 11.4 13.9 -0.5% 

EMR 112 660.4 18.1 15.9 -3.8%  SBUX 422 544.5 10 16.4 0.3% 

EXC 63 662.2 18.7 16.7 -1.0%  SLB 178 564.4 16.8 15.6 2.4% 

F 682 510.9 14 14.5 1.0%  SO 82 621.4 13.7 15 1.1% 

FB 753 564.4 11.3 12.4 -1.4%  T 624 569.1 11.9 12.9 1.5% 

FDX 151 517.3 10.8 14.6 2.0%  TGT 325 600.3 18.3 14.5 -0.3% 

FOX 80 524.5 10.6 13.5 -0.1%  TWX 132 528.5 11 12.1 3.9% 

GD 32 582.3 9.9 14.1 2.4%  TXN 62 574.4 9.7 17 2.4% 

GE 813 548 12.6 13.4 -2.2%  UNH 48 532 9.6 13.2 4.0% 

GILD 659 718.4 17.5 15.8 -0.2%  UNP 203 623.3 15.7 17.3 2.7% 

GM 432 538.5 19.4 12.9 0.5%  UPS 83 642.4 14.1 18.3 0.1% 

GOOG 638 570.5 12.9 12.2 -2.0%  USB 50 604.5 13.6 17.5 -0.5% 

GS 123 537.2 16.7 11.7 3.9%  UTX 98 606.6 12.1 15.3 1.7% 

HAL 218 559.5 20 12.9 6.6%  V 171 589.6 11.5 16.3 -1.7% 

HD 186 498.3 9.6 17.4 -0.1%  VZ 314 570.9 11.9 13.2 0.2% 

HON 110 528.9 10.9 17.3 -1.7%  WBA 144 547.1 10 17.8 -2.0% 

IBM 578 646.4 17.8 14.1 3.2%  WFC 335 567.4 19.1 13.5 -1.3% 

INTC 805 597.2 13.9 13.5 1.0%  WMT 528 595.4 15.5 13.9 -2.1% 

JNJ 359 610.8 13.1 14.9 2.1%  XOM 491 623.4 17.9 14.2 -0.1% 
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