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Abstract. We introduce a new predictor-corrector interior-point algorithm for solving P∗(κ)-
linear complementarity problems which works in a wide neighbourhood of the central path. We
use the technique of algebraic equivalent transformation of the centering equations of the cen-
tral path system. In this technique, we apply the function ϕ(t) =

√
t in order to obtain the new

search directions. We define the new wide neighbourhood Dϕ. In this way, we obtain the first
interior-point algorithm, where not only the central path system is transformed, but the defi-
nition of the neighbourhood is also modified taking into consideration the algebraic equivalent
transformation technique. This gives a new direction in the research of interior-point methods.

We prove that the interior-point algorithm has O
(

(1+κ)n log
(

(x0)T s0

ε

))
iteration complexity.

Furtermore, we show the efficiency of the proposed predictor-corrector interior-point method
by providing numerical results. Up to our best knowledge, this is the first predictor-corrector
interior-point algorithm which works in the Dϕ neighbourhood using ϕ(t) =

√
t.

JEL code: C61
Keywords. predictor-corrector interior-point algorithm; P∗(κ)-linear complementarity prob-
lems; wide neighbourhood; algebraic equivalent transformation technique.

1. Introduction

Starting from the field of linear optimization (LO), interior-point algorithms (IPAs)
have spread around different fields of mathematical programming, returning to nonlinear
(convex) programming, as well. For analysis of IPAs see the monographs of Roos et al.
[51], Wright [61], Ye [62], Klerk [35], Kojima et al. [36], and Nesterov and Nemirovskii
[42], respectively.

IPAs for (LO) have been extended to more general class of problems, such as linear
complementarity problems (LCPs) [7, 28, 29, 31, 36, 38, 47], semidefinite programming
problems (SDP) [18, 19, 35, 59], smooth convex programming problems (CPP) [42], and
symmetric cone optimization (SCO) problems [32, 49, 53, 56, 58, 60].

LCPs have several applications in different fields, such as optimization theory, engi-
neering, business and economics, etc [7, 20]. For example, the Arrow-Debreu competitive
market equilibrium problem with linear and Leontief utility functions formulated as LCP
∗Corresponding Author.
E-mail addresses: tibor.illes@uni-corvinus.hu (Tibor Illés), petra.rigo@uni-corvinus.hu (Petra Renáta
Rigó), torok.roland95@gmail.com (Roland Török).
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[17, 63]. Testing copositivity of matrices also has connection with solvability of special
LCPs [5]. In 2020, Darvay et al. [14] introduced a predictor-corrector (PC) IPA for P∗(κ)-
LCPs and obtained very promising numerical results for testing copositivity of matrices
using LCPs. Moreover, LCPs arise also in game theory, see [7, 54].

The monographs written by Cottle et al. [7] and Kojima et al. [36] summarize the
most important results related to the theory and applications of LCPs. The solvability of
the LCP is influenced by the properties of the problem’s matrix. If the problem’s matrix
is skew-symmetric, see [51, 61, 62], or positive semidefinite, see [37], then LCPs can be
solved in polynomial time by using IPAs. However, there is still an open question, whether
the LCPs with other types of matrices can be solved in polynomial time [18]. In general,
LCPs belong to the class of NP-complete problems, see [6]. The most important class
of LCPs from the point of view of the complexity theory is the class of sufficient LCPs.
This class was introduced by Cottle, Pang, and Venkateswaran [8]. The name sufficient
comes from the observation that in case of LCPs this matrix property is sufficient in
order to ensure that the solution set of the LCP is a convex, closed, bounded polyhedron
[8]. The union of the sets P∗(κ) for all nonnegative κ gives the P∗ class. Väliaho [57]
demonstrated that the class of P∗-matrices is equivalent to the class of sufficient matrices
introduced by Cottle et al. [8]. It should be mentioned that LCPs can be extended to
more general problems, such as general LCPs [29, 30] and P∗(κ)-LCPs over Cartesian
product of symmetric cones [2, 3, 40, 52].

The predictor-corrector (PC) IPAs have ensured an efficient tool for solving LO and
LCPs, respectively. They perform in a main iteration a predictor and several corrector
steps. One of the first PC IPAs for LO was proposed by Sonnevend et al. [55]. Later on,
Mizuno, Todd and Ye [41] intoroduced such PC IPA for LO in which only a single corrector
step is performed in each iteration of the algorithm and whose iteration complexity is the
best known in the LO literature. These types of methods are called Mizuno-Todd-Ye
(MTY) PC IPAs. It should be mentioned that in order to use only one corrector step
in each iteration, the centrality parameter and the update parameter should be properly
synchronized. Illés and Nagy [27], Potra and Sheng [47, 48] and Gurtuna et al. [24] also
introduced PC IPAs for P∗(κ)-LCPs.

We can classify the IPAs based on the length of the steps. In this way, there exist short-
and long-step IPAs. The short-step algorithms generate the new iterates in a smaller
neighbourhood, while the long-step ones work in a wider neighbourhood of the central
path. Potra and Liu [39, 46] presented first order and higher order PC IPAs for solving
P∗(κ)-LCPs using the N−∞ wide neighborhood of the central path. It should be mentioned
that there was a gap between theoretical and practical behavior of these IPAs in the sense
that in theory, short-step algorithms had better theoretical complexity, while the long-
step algorithms turned out to be more efficient in practice. Peng et al. [43] were the first
who reduced this gap by using self-regular barriers. After that, Potra [44] proposed a PC
IPA for degenerate LCPs working in a wide neighbourhood of the central path having
the same complexity as the best known short-step IPAs. Later on, Ai and Zhang [1]
introduced a long-step IPA for monotone LCPs which has the same complexity as the
currently best-known short-step interior-point methods. They decomposed the classical
Newton direction as the sum of two other directions, corresponding to the negative and
positive parts of the right-hand side. After that, Potra [45] generalized this algorithm to
P∗(κ)-LCPs.

An important aspect in the analysis of the IPAs is the determination of the search
directions. Peng et al. [43] used self-regular kernel functions and they reduced the the-
oretical complexity of long-step IPAs. Darvay [10] presented the technique of algebraic
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equivalent transformation (AET) of the centering equations of the central path system.
The idea of this method is to apply a continuously differentiable, invertible, monotone
increasing ϕ function on the nonlinear equation of the central path problem. The first
PC IPAs using the AET method for determining search directions was given by Darvay
[11, 12] for LO and linearly constrained convex optimization. Kheirfam [33] generalized
these algorithms to P∗(κ)-horizontal LCPs. Note that the most widely used function for
finding search directions using the AET technique is the identity map. Darvay [9, 10] used
the square root function in the AET technique. Later on, Darvay et al. [15] proposed an
IPA for LO based on the direction generated by using the function ϕ(t) = t−

√
t. In 2020,

Darvay et al. [13, 14] introduced PC IPAs for LO and P∗(κ)-LCPs, that are based on this
search directions. They also provided a new approach for introducing PC IPAs using the
AET technique, which consists in the decomposition of the right hand side of the Newton-
system into two terms: one depending and the other not depending on the parameter µ.
Kheirfam and Haghighi [34] defined IPA for solving P∗(κ)-LCPs which uses the function
ϕ(t) =

√
t

2(1+
√
t) in the AET technique. Rigó [50] presented several IPAs that are based on

the search directions obtained by using the function ϕ(t) = t−
√
t in the AET technique.

The broadest class of functions used in the AET technique was proposed by Haddou et
al. [25]. However, the functions ϕ(t) =

√
t and ϕ(t) = t−

√
t do not belong to the class

of concave functions introduced by Haddou et al. An interesting research topic related to
the AET technique would be to introduce a class of functions which contains the functions
ϕ(t) =

√
t, ϕ(t) = t−

√
t and ϕ(t) =

√
t

2(1+
√
t) as well and for which polynomial-time IPAs

can be introduced.
The purpose of this paper is to generalize the wide neighbourhoods D and N−∞ taking

into consideration the transformed central path system using the AET approach. We also
analyse the relationship between the new generalized neighbourhoods Dϕ and N−∞,ϕ. We
prove that in case of ϕ(t) = t and ϕ(t) =

√
t these neighbourhoods are the same. However,

in case of ϕ(t) = t−
√
t, only the relation Dϕ ⊆N−∞,ϕ holds. Moreover, using the method

given by Potra and Liu in [46] and the new approach proposed by Darvay et al. [14], we
introduce a new first order PC IPA which works in the new wide neighbourhood Dϕ using
the function ϕ(t) =

√
t. This is the first PC IPA which works in the Dϕ neighbourhood

of the central path using ϕ(t) =
√
t in the AET technique. We prove that the provided

algorithm has O
(

(1 +κ)n log
(

(x0)T s0

ε

))
iteration complexity, similarly to that of Potra

and Liu [46]. Furthermore, by providing numerical results we also show the efficiency of
the proposed PC IPA. We implemented the theoretical version of the IPA and followed
the steps of the proposed PC IPA. We compared our PC IPA to the PC IPA using the
function ϕ(t) =

√
t in the AET technique and the neighbourhood N−∞,ϕ(1−β) with the

PC IPA of Potra and Liu proposed in [46], which corresponds to the ϕ(t) = t case in our
generalization of the wide neighbourhood.

The paper is organized in the following way. In the second section P∗(κ)-LCPs and the
central path problem is presented. Section 3 contains the AET technique and the new
generalized wide neighbourhoods used in this paper. In Section 4 we present the new
PC IPA for solving P∗(κ)-LCPs. Section 5 is devoted to the analysis of the proposed PC
IPA. In Section 6 we propose a new version of the PC IPA which does not depend on κ.
In Section 7 we provide numerical results that show the efficiency of the introduced IPA.
Finally, in Section 8 some concluding remarks are enumerated.
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We use the following notations throughout the paper. Let x and s be two n-dimensional
vectors. Then, xs denotes the componentwise product of the vectors x and s. Further-
more, x

s =
[
x1
s1
, x2
s2
, ...., xnsn

]T
, where si 6= 0 for all 1≤ i≤ n. In case of an arbitrary function

f and a vector x we use f(x) = [f(x1),f(x2), . . . ,f(xn)]T . The vector e = [1,1, . . . ,1]T
denotes the n-dimensional all-one vector. The diagonal matrix obtained by the elements
of the vector x is denoted by diag(x). We denote by ‖x‖ the Euclidean norm and by
‖x‖∞ the infinity norm.

2. Linear Complementarity Problems (LCPs) and matrix classes

In this section we present some well known matrix classes and the linear complemen-
tarity problem (LCP).

A matrixM ∈Rn×n is a P -matrix (P0-matrix), if all of its principal minors are positive
(nonnegative), see [21, 22]. Furthermore, Cottle et al. [8] defined the class of sufficient
matrices.

Definition 2.1. (Cottle et al. [8]) A matrix M ∈ Rn×n is a column sufficient matrix if
for all x ∈ Rn

X(Mx)≤ 0 implies X(Mx) = 0,
where X = diag(x). Analogously, matrix M is row sufficient if MT is column sufficient.
The matrix M is sufficient if it is both row and column sufficient.

Kojima et al. [36] defined the notion of P∗(κ)-matrices.

Definition 2.2. (Kojima et al. [36]) Let κ≥ 0 be a nonnegative real number. A matrix
M ∈ Rn×n is a P∗(κ)-matrix if

(1 + 4κ)
∑

i∈I+(x)
xi(Mx)i+

∑
i∈I−(x)

xi(Mx)i ≥ 0, ∀x ∈ Rn, (2.1)

where
I+(x) = {1≤ i≤ n : xi(Mx)i > 0} and I−(x) = {1≤ i≤ n : xi(Mx)i < 0}.

It should be mentioned that P∗(0) is the set of positive semidefinite matrices. The
handicap of the matrix M is defined in the following way:

κ̂(M) := min{κ : κ≥ 0,M is P∗(κ)-matrix}.

Definition 2.3. (Kojima et al. [36]) A matrix M ∈ Rn×n is a P∗-matrix if it is a P∗(κ)-
matrix for some κ≥ 0. Let P∗(κ) denote the set of P∗(κ)-matrices. Analogously, we also
use P∗ to denote the set of all P∗-matrices, i.e.,

P∗ =
⋃
κ≥0

P∗(κ).

Kojima et al. [36] showed that a P∗-matrix is column sufficient and Guu and Cottle [23]
proved that it is row sufficient, too. Therefore, each P∗-matrix is sufficient. Moreover,
Väliaho [57] proved the other inclusion as well, showing that the class of P∗-matrices is
the same as the class of sufficient matrices.
The linear complentarity problem (LCP) is the following:

−Mx+ s = q x,s≥ 0, xs = 0, (LCP )
where M ∈ Rn×n.
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If M is P∗(κ)-matrix, then the corresponding LCP is called P∗(κ)-LCP. We define the
feasibility set:

F := {(x,s) ∈ R2n
⊕ :−Mx+ s = q},

the set of interior points:
F+ := F ∩R2n

+
and the set of optimal solutions:

F∗ := {(x,s) ∈ F : xs = 0}.
Throughout the paper we will assume that M is P∗(κ)-matrix. We also suppose that
F+ 6= ∅. The central path problem is the following:

−Mx+ s = q x,s> 0, xs = µe, (CCP )
where e denotes the n-dimensional all-one vector and µ > 0. If M is a P∗(κ)-matrix, then
the central path system has unique solution for every µ > 0, see [36].

3. Generalized wide neighbourhoods

In this section we define some new generalized neighbourhoods. Firstly, we present
the AET technique of the centering equations of the central path system [10]. Let ϕ :
(η2,∞)→ R be a continuously differentiable and invertible function, such that ϕ′(t)> 0,
for each t≥ η2, where η ∈ [0,1). Then, system (CCPϕ) can be transformed in the following
way:

−Mx+ s = q x,s> 0, ϕ
(

xs
µ

)
= ϕ(e). (CCPϕ)

Let (x,s) ∈ F . Then, the average duality gap is defined as

µ(x,s) := xT s
n
. (3.1)

Consider the following generalized proximity measure

δ−∞,ϕ(x,s) :=

∥∥∥∥∥∥
[
ϕ

(
xs

µ(x,s)

)
−ϕ(e)

]−∥∥∥∥∥∥
∞

.

Using the introduced proximity measure and the AET approach, we introduce the
generalized wide neighbourhood of (CCPϕ):

N−∞,ϕ(α) := {(x,s) ∈ F+ : δ−∞,ϕ(x,s)≤ α}. (3.2)
It should be mentioned that in case of ϕ(t) = t we get the wide neighbourhood used by

Potra and Liu [46]:
N−∞(α) := {(x,s) ∈ F+ : δ−∞(x,s)≤ α}. (3.3)

We also introduce another, generalized wide neighbourhood of (CCPϕ):

Dϕ(β) := {(x,s) ∈ F+ : ϕ
(

xs
µ(x,s)

)
≥ βϕ(e)}. (3.4)

Note, that in the special case when ϕ(t) = t, we get the wide neighbourhood used in [46]:

D(β) := {(x,s) ∈ F+ : xs
µ(x,s) ≥ βe}. (3.5)

The following lemma represents a novelty of the paper. It plays important role in this
theory, because it shows which functions used in the AET technique in the literature
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can be applied in this approach for introducing PC IPAs working in the generalized wide
neighbourhood given in (3.2), but the analysis of the algorithm could be done in a simplier
wide neighbourhood (3.4).

Lemma 3.1. Let (x,s) ∈ F+ and α ∈ (0,1). Then, in case of ϕ(t) = t and ϕ(t) =
√
t we

have N−∞,ϕ(α) =Dϕ(1−α). In case of ϕ(t) = t−
√
t we have Dϕ(1−α)⊆N−∞,ϕ(α).

Proof. Firstly we prove it in the case, when ϕ(t) = t:
(x,s) ∈ D(1−α) ⇐⇒ xs≥ (1−α)µ(x,s)e = µ(x,s)e−αµ(x,s)e

⇐⇒ xs
µ(x,s) −e≥−αe ⇐⇒

∥∥∥∥∥∥
[

xs
µ(x,s) −e

]−∥∥∥∥∥∥
∞

≤ α

⇐⇒ (x,s) ∈N−∞(α).
Now we can consider the other cases. Then, we have

(x,s) ∈N−∞,ϕ(α) ⇐⇒

∥∥∥∥∥∥
[
ϕ

(
xs

µ(x,s)

)
−ϕ(e)

]−∥∥∥∥∥∥
∞

≤ α

⇐⇒ ϕ

(
xs

µ(x,s)

)
−ϕ(e)≥−αe ⇐⇒ ϕ

(
xs

µ(x,s)

)
≥ ϕ(e)−αe

and

(x,s) ∈ Dϕ(1−α) ⇐⇒ ϕ

(
xs

µ(x,s)

)
≥ (1−α)ϕ(e) = ϕ(e)−αϕ(e).

It is easy to see, that in case of ϕ(t) =
√
t the ϕ(e) = e holds, so we obtain N−∞,ϕ(α) =

Dϕ(1−α). In case of ϕ(t) = t−
√
t only Dϕ(1−α)⊆N−∞,ϕ(α) holds. �

4. New predictor-corrector interior-point algorithm

In this paper we consider the ϕ(t) =
√
t case in this generalized wide neighbourhood

approach. Applying Newton’s method to system (CCPϕ) with ϕ(t) =
√
t we obtain the

following transformed Newton system:
−M∆x+ ∆s = 0,
s∆x+x∆s = 2(√µxs−xs) . (4.1)

In the predictor step we use the approach given by Darvay et al [14]. In this way, we
decompose the right hand side of (4.1) in two terms, one which depends on µ, the other
which does not depend on µ. After that we set µ= 0, hence we obtain

−M∆px+ ∆ps = 0,
s∆px+x∆ps =−2xs, (4.2)

where (∆px,∆ps) denote the predictor search directions. Now, we describe the main steps
of the algorithm. Let (x,s) ∈N−∞,ϕ(1−β) =Dϕ(β), where β ∈ (0,1). Then the predictor
search direction (∆px,∆ps) can be calculated by using system (4.2). We want to compute
the iterate in such a way, that (xp(θ),sp(θ)) ∈N−∞,ϕ(1−β+βγ) =Dϕ((1−γ)β) still stay
true, where

xp(θ) = x + θ∆px and sp(θ) = s + θ∆ps (4.3)
and

γ = 1−β
(1 + 4κ)n+ 1 . (4.4)
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The step length in the predictor step is defined as
θp = sup{θ̂ > 0 : (xp(θ),sp(θ)) ∈N−∞,ϕ(1−β+βγ) =Dϕ((1−γ)β),∀θ ∈ [0, θ̂]}, (4.5)

After the predictor step we will have
(xp,sp) = (xp(θp),sp(θp)) = (x + θp∆px,s + θp∆ps) ∈N−∞,ϕ(1−β+βγ). (4.6)

The output of the predictor step will be the input of the corrector step. Using system
(4.1) we calculate the corrector direction (∆cx,∆cs) from the following system:

−M∆cx+ ∆cs = 0,
sp∆cx+xp∆cs = 2

(√
µpxpsp−xpsp

)
, (4.7)

where
µp = µ(xp,sp) = (xp)T sp

n
. (4.8)

The corrector step length is defined in the following way:
θc := argmin{µc(θ) : (xc(θ),sc(θ)) ∈N−∞,ϕ(1−β) =Dϕ(β)}, (4.9)

where
µc(θ) = µ(xc(θ),sc(θ)) = (xc(θ))T sc(θ)

n
(4.10)

and
xc(θ) = xp+ θ∆cx, sc(θ) = sp+ θ∆cs. (4.11)

After the corrector step we get the following:
(xc,sc) = (xc(θc),sc(θc)) ∈N−∞,ϕ(1−β), (4.12)

where xc(θc) = xp+ θc∆cx and sc(θc) = sp+ θc∆cs.
As (xc,sc)∈N−∞,ϕ(1−β) =Dϕ(β), we can set (x,s) := (xc,sc) and start another predictor-

corrector iteration. The obtained PC IPA is defined in Algorithm 1.
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Algorithm 1: First-order predictor-corrector algorithm
Input:
Given κ≥ κ̂(M), (x0,s0) ∈N−∞,ϕ(1−β) =Dϕ(β), β ∈ (0.9,1)
Calculate γ = 1−β

(1+4κ)n+1
Let µ0 = µ(x0,s0) and k = 0
ε > 0 precision value.
Output: (xk,sk) : xkT sk ≤ ε
begin

while nµ≥ ε do
(Predictor step);
x := xk, s := sk;
Step 1. Calculate affin direction from (4.2);
Step 2. Calculate the predictor steplength using (4.5);
Step 3. Calculate (xp,sp) using (4.6);
if µ(xp,sp) = 0 then

STOP; Optimal solution found;
else

if (xp,sp) ∈N−∞,ϕ(1−β) then
(xk+1,sk+1) = (xp,sp), µk+1 = µ(xp,sp), k = k+ 1, RETURN;

else
(Corrector step);
Step 4. Calculate centering direction from (4.7);
Step 5. Calculate centering steplenght using (4.9);
Step 6. Calculate (xc,sc) using (4.12);

end
(xk+1,sk+1) = (xc,sc), µk+1 = µ(xc,sc), k = k+ 1, RETURN;

end
end

end

We give a more detailed description on how the predictor and corrector step lengths
could be determined. Using system (4.2) we determine the predictor search directions
(∆px,∆ps). After that we have to calculate the largest θ which will satisfy the following:√√√√xp(θ)sp(θ)

µp(θ)
≥ (1−γ)β,

where xp(θ) = x + θ∆px, sp(θ) = s + θ∆ps, µ := µ(x,s), and
µp(θ) := µ(xp(θ),sp(θ)). (4.13)

Using (3.1) and (4.2), after some calculations we have

xp(θ)sp(θ) = (1−2θ)xs+ θ2∆px∆ps, µp(θ) = (1−2θ)µ+ θ2∆pxT∆ps
n

. (4.14)

We will use the following notations:

u = xs
µ
, v = ∆px∆ps

µ
. (4.15)

Now from Lemma 5.1 and 5.2 using a =−2xs we can easily see that
−4κn≤ eTv≤ n (4.16)
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holds, hence the discriminant will always be nonnegative, which means the smallest root
will be:

θp0 =
2−

√
4−4eTv

n

2 = 1
1 +

√
1− eTv

n

. (4.17)

Therefore,
µp(θ)> µp(θp0) = 0, for all 0≤ θ < θp0. (4.18)

Using (4.2) and (4.15), in case of ϕ(t) =
√
t the relation

ϕ

(
xp(θ)sp(θ)
µp(θ)

)
≥ (1−γ)β

can be written as

(1−2θ)(ui− ((1−γ)β)2) + θ2
(
vi− ((1−γ)β)2eTv

n

)
≥ 0, i= 1, . . . ,n. (4.19)

Since (x,s)∈N−∞,ϕ(1−β) =Dϕ(β), inequality (4.19) is satisfied for θ= 0. The inequal-
ity (4.19) will be fulfilled if θ ∈ (0, θpi], where

θpi =


∞, if ∆i≤0

1
2 , if vi− ((1−γ)β)2eT v

n =0

ζ, if ∆i>0 and vi− ((1−γ)β)2eT v
n 6=0, where

(4.20)

∆i = 4(ui− ((1−γ)β)2)2−4(ui− ((1−γ)β)2)
(
vi−

((1−γ)β)2eTv
n

)
and

ζ = 2(ui− ((1−γ)β)2)−
√

∆i

2
(
vi−

((1−γ)β)2eTv
n

) = 2(ui− ((1−γ)β)2)
2(ui− ((1−γ)β)2) +

√
∆i
.

Taking
θp = min{θpi : 1, . . . ,n} (4.21)

will be a good ceiling for appropriate predictor steplengths. For all 0 ≤ θ < θp we will
have √

xp(θ)sp(θ)≥ (1−γ)β
√
µp(θ)> (1−γ)β

√
µp(θp)≥ 0. (4.22)

Using (4.2) and (4.14) we obtain that −Mxp(θ) + sp(θ) = q. Using standard continuity
argument we obtain xp(θ)> 0 and sp(θ)> 0, for all θ ∈ (0, θp), which means that (xp,sp)∈
F+, where (xp,sp) is defined in (4.6).

Using system (4.7), we determine the corrector search directions (∆cx,∆cs). We de-
scribe the way how we can calculate the corrector step length θc. Using (4.7), (4.10) and
(4.11) we have

xc(θ)sc(θ) = (1−2θ)xpsp+ 2θ
√
µpxpsp+ θ2∆cx∆cs, (4.23)

µc(θ) = (1−2θ)µp+ 2θ µp√
n

+ θ2∆cxT∆cs
n

. (4.24)

Moreover, using (4.3) and (4.8) we consider the following notations:

u = xpsp

µp
, v = ∆cx∆cs

µp
. (4.25)
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We want to reach √√√√xc(θ)sc(θ)
µc(θ)

≥ β. (4.26)

Using (4.10) and the first equation of system (4.7), after some calculations we obtain that
relation (4.26) is equivalent to the following system of quadratic inequalities in θ:

(1−2θ)(ui−β2) + 2θ
(
√
ui−

β2
√
n

)
+ θ2

(
vi−β2eTv

n

)
≥ 0, i= 1, . . . ,n. (4.27)

We will use the following notations:

αi = vi−β2eTv
n

and

∆i = 4
(
ui−β2 + β2

√
n
−
√
ui

)2
−4

(
vi−β2eTv

n

)
(ui−β2).

In the proof of Theorem 5.1 we will show that (4.27) has solution, hence the situation
∆i < 0 and αi < 0, i = 1, . . . ,n cannot occur. If ∆i ≥ 0 and αi 6= 0, the largest and the
smallest root of the quadratic equation will be denoted as:

θ
−
i =

ui−β2 + β2
√
n
−
√
ui− sgn(αi)

√
∆i

2αi

θ
+
i =

ui−β2 + β2
√
n
−
√
ui+ sgn(αi)

√
∆i

2αi
After some calculations we obtain that the ith inequality of system (4.27) will be satisfied
for all θ ∈ Ti, where

Ti =



(−∞,∞), if ∆i<0,αi>0

(−∞,θ−i ]∪[θ+
i ,∞), if ∆i≥0,αi>0

[θ−i ,θ
+
i ], if ∆i≥0,αi<0−∞, ui−β2

2(ui−β2−
√
ui+ β2

√
n

)

, if αi=0,ui>

(
1+
√

1+4β2− 4β2
√
n

)2

4

 ui−β2

2(ui−β2−
√
ui+ β2

√
n

)
,∞

, if αi=0,ui<

(
1+
√

1+4β2− 4β2
√
n

)2

4

(−∞,∞), if αi=0,ui=

(
1+
√

1+4β2− 4β2
√
n

)2

4

For all θ ∈ T = ∩ni=1Ti∩Rn⊕, the inequality given in (4.26) will hold. We will show that
T is nonempty.
In the following section we present the analysis of Algorithm 1.

5. Analysis of the algorithm

Firstly, we present some technical lemmas that will be used later in the analysis.
10



Lemma 5.1. (Lemma 3.2 in [46]) Assume, that we have a P∗(κ)-LCP and let (∆x,∆s)
be the solution of the following linear system:

−M∆x + ∆s = 0,
s∆x + x∆s = a,

where (∆x,∆s) ∈R2n
+ and a ∈Rn are given. If I+ = {i : ∆xi∆si > 0},I− = {i : ∆xi∆si <

0} are defined in this way, then we have
1

1 + 4κ ‖∆x∆s‖∞ ≤
∑
i∈I+

∆xi∆si ≤
1
4

∥∥∥∥(xs)−
1
2 a
∥∥∥∥2

2
. (5.1)

Lemma 5.2. (Lemma 3.3 in [46]) Assume that we have a P∗(κ)-LCP and let (∆x,∆s)
be the solution of the following linear system:

−M∆x + ∆s = 0,
s∆x + x∆s = a,

where (∆x,∆s) ∈ R2n
+ and a ∈ Rn are given. Then, the following inequality holds:

∆xT∆s≥−κ
∥∥∥∥(xs)−

1
2 a
∥∥∥∥2

2
. (5.2)

The following lemma will be used in the final theorem.

Lemma 5.3. Let u = xs
µ , where (x,s) ∈ N−∞,ϕ(1− β) = Dϕ(β) and let β ∈ (0,1) and

γ = 1−β
(1+4κ)n+1 . Then, we have

ui− ((1−γ)β)2 ≥ β2γ.

Proof. Since before the predictor step (x,s) ∈ Dϕ(β),
ui− ((1−γ)β)2 = ui−β2 + 2β2γ−β2γ2 ≥ 2β2γ−β2γ2.

After that we have
2β2γ−β2γ2 ≥ β2γ, (5.3)

hence we obtain γ ≥ γ2, which holds for all γ < 1. Using the definition of γ in (4.4) and
0< β < 1 we obtain the final result.

�

Theorem 5.1. Let n≥ 2 and β ∈ (0.9,1). Then, the PC IPA given in Algorithm 1 using
the function ϕ(t) =

√
t in the AET technique is well defined and

µk+1 ≤
(

1− 3(1−β)β
2((1 + 4κ)n+ 2)

)
µk, k = 0,1 . . .

Proof. From Lemma 5.1 and Lemma 5.2 we have:
‖v‖∞ ≤ (1 + 4κ)n, −4κn≤ eTv≤

∑
i∈I+

vi ≤ n. (5.4)

In the predictor step we have (x,s) ∈N−∞,ϕ(1−β) =Dϕ(β). Using (4.20) we get

θpi ≥
2(ui− ((1−γ)β)2)

2(ui− ((1−γ)β)2) +
√

4(ui− ((1−γ)β)2)2−4(ui− ((1−γ)β)2)(vi− ((1−γ)β)2 eTv
n )

≥ 2(ui− ((1−γ)β)2)
2(ui− ((1−γ)β)2) +

√
4(ui− ((1−γ)β)2)2 + 4(ui− ((1−γ)β)2)(‖v‖∞+ ((1−γ)β)2)

11



From Lemma 5.3 we have
ui− ((1−γ)β)2 ≥ β2γ.

Since the function f(t) = 2t
2t+
√

4t2+4at is increasing in (0,∞) interval for each a > 0, we
have

θpi ≥
2β2γ

2β2γ+
√

4(β2γ)2 + 4(β2γ)(‖v‖∞+ 1)
= 1

1 +
√

1 + (β2γ)−1(‖v‖∞+ 1)

≥ 1
1 +

√
1 + (β2γ)−1((1 + 4κ)n+ 1)

= β
√

1−β
β
√

1−β+
√
β2(1−β) + ((1 + 4κ)n+ 1)2

.

It can be seen, that β
√

1−β ≤ 1
2 , hence

β
√

1−β +
√
β2(1−β) + ((1 + 4κ)n+ 1)2

≤ 1
2 +

√
((1 + 4κ)n+ 1)2 + 1

4 < (1 + 4κ)n+ 2,

that is why θpi > θ̂ := β
√

1−β
(1 + 4κ)n+ 2 . Using the definition θp given in (4.21), from (4.16),

(4.17), κ > 0 and n ≥ 2 we have θp0 ≥
1

1+
√

1+4κ > θ̂. This means that in this case the
step length defined in (4.21) satisfies θp > θ̂. We have

√
xp(θ)sp(θ) ≥ (1− γ)β

√
µp(θ) >

(1−γ)β
√
µp(θp)≥ 0. From (4.14) and (4.16) the following inequality holds:

µp = µ(θp)< µ(θ̂)≤
(
(1−2θ̂) + θ̂2

)
µ= (1− (2− θ̂)θ̂)µ. (5.5)

Assuming that n≥ 2 and κ > 0, we obtain

2− θ̂ = 2− β
√

1−β
(1 + 4κ)n+ 2 ≥ 2− β

√
1−β
4 ≥ 2− 1

8 = 15
8

hence we have

µp ≤
(

1− 15β
√

1−β
8((1 + 4κ)n+ 2)

)
µ (5.6)

Now we are dealing with the corrector step. In this step (xp,sp) ∈N−∞,ϕ(1−β+βγ), so∥∥∥∥∥∥2
e−

√√√√xpsp

µp

∥∥∥∥∥∥
2

2
= 4

n−2
n∑
i=1

√√√√xpi s
p
i

µp
+

n∑
i=1

xpi s
p
i

µp

= 8
n− n∑

i=1

√√√√xpi s
p
i

µp


≤ 8(1− (1−γ)β)n=: ξn.

Using Lemma 5.1 with a = 2(√µpxpsp−xpsp) we get the following two inequalities:

‖∆cx∆cs‖∞ ≤
(1 + 4κ)ξn

4 µp,
∑
i∈I+

∆xci∆sci ≤
ξn

4 µp. (5.7)
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Using (4.23) we obtain
xc(θ)sc(θ)

µp
≥ (1−2θ)((1−γ)β)2 + 2θ ((1−γ)β)− (1 + 4κ)n

4 ξθ2

= ((1−γ)β)2 + 2θ
(
(1−γ)β− (1−γ)β)2

)
− (1 + 4κ)n

4 ξθ2. (5.8)

Furthermore, from (4.24) and (5.7) we have

µc(θ)≤
(

1−2θ+ 2θ√
n

+ 0.25ξθ2
)
µp. (5.9)

Using (5.8) and (5.9) we get

xc(θ)sc(θ)−β2µc(θ)
µp

≥ xc(θ)sc(θ)
µp

−
β2(1−2θ+ 2θ√

n
+ 0.25ξθ2)µp

µp
≥ g(θ), (5.10)

where

g(θ) := β2−2β2γ+β2γ2 + 2θ(1−γ)β(1− (1−γ)β)−β2 + 2β2θ

− 2β2θ√
n
−0.25ξ((1 + 4κ)n+β2)θ2. (5.11)

Using the definition of γ given in (4.4) we get the following

ξ = 8
(

(1−β)(1 + 4κ)n+ 1−β2

(1 + 4κ)n+ 1

)
.

Then, g(θ) will be:

g(θ) = −2 (1−β)β2

(1 + 4κ)n+ 1 + β2(1−β)2

((1 + 4κ)n+ 1)2

+ 2θβ
(

(1 + 4κ)n+β

(1 + 4κ)n+ 1
(1−β)(1 + 4κ)n+ (1−β)(1 +β)

(1 + 4κ)n+ 1 +β− β√
n

)

− 2θ2 (1−β)(1 + 4κ)n+ (1−β)(1 +β)
(1 + 4κ)n+ 1 ((1 + 4κ)n+β2)

≥ −(1−β)((1 + 4κ)n+β))
2((1 + 4κ)n+ 1)2 ·p

≥ −(1−β)((1 + 4κ)n+β))
2((1 + 4κ)n+ 1)2 · r

where

p = 4β2 (1 + 4κ)n+ 1
(1 + 4κ)n+β

− 4βθ
(

((1 + 4κ)n+ 1 +β) + β

1−β
((1 + 4κ)n+ 1)
((1 + 4κ)n+β)((1 + 4κ)n+ 1)

(
1− 1√

n

))

+ 4θ2 ((1 + 4κ)n+β2)
((1 + 4κ)n+β) ((1 + 4κ)n+ 1 +β)((1 + 4κ)n+ 1). (5.12)
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and

r = 4β2 3
2 +β

−4βθ
(

((1 + 4κ)n+ 1 +β) + β((1 + 4κ)n+ 1)
1−β

(
1− 1√

n

))
+ 4θ2((1 + 4κ)n+ 1 +β)((1 + 4κ)n+ 1). (5.13)

We used that p≤ r. Since −4β2 3
2+β ≥−4β2 3

2 =−6β2 and n≥ 2 we have

g(θ) ≥ −(1−β)((1 + 4κ)n+β))
2((1 + 4κ)n+ 1)2 · s, (5.14)

where
s = ((2(1 + 4κ)n+ 1)θ−β)((2(1 + 4κ)n+ 1 +β)θ−β)

− 2β2θ+ 5β2− 4β2θ(1 + 4κ)n+ 1)
1−β

(
1− 1√

2

)
. (5.15)

If θ = β

2((1 + 4κ)n+ 1) and assuming β ∈ (0.9,1) we obtain

g

(
β

2((1 + 4κ)n+ 1)

)
≥ 0. (5.16)

Hence, we have β
2((1+4κ)n+1) ∈ T . From (5.9) and assuming that n≥ 2 we have

µc = µc(θc)≤ µc
(

β

2((1 + 4κ)n+ 1)

)

≤
(

1− β

(1 + 4κ)n+ 1 + β√
n((1 + 4κ)n+ 1) + β2(1−β)((1 + 4κ)n+ 1 +β)

2((1 + 4κ)n+ 1)3

)
µp

≤
(

1 + β2(1−β)((1 + 4κ)n+ 1 +β)
2((1 + 4κ)n+ 1)3

)
µp.

Since (1+4κ)n+1+β
2((1+4κ)n+1) = 1

2

(
1 + β

(1+4κ)n+1

)
≤ 2

3 we have

µc ≤
(

1 + 2β2(1−β)
3((1 + 4κ)n+ 1)2

)
µp <

(
1 + 2β(1−β)

3((1 + 4κ)n+ 1)2

)
µp. (5.17)

Using (5.6) and (5.17) we obtain

µc ≤
(

1− 15β
√

1−β
8(1 + 4κ)n+ 2

)(
1 + 2β(1−β)

3((1 + 4κ)n+ 1)2

)
µ

≤
(

1− 15β(1−β)
8(1 + 4κ)n+ 2

)(
1 + 2β(1−β)

3(1 + 4κ)n((1 + 4κ)n+ 2)

)
µ

≤
(

1− 15β(1−β)
8(1 + 4κ)n+ 2 + 2β(1−β)

3(1 + 4κ)n((1 + 4κ)n+ 2)

)
µ

≤
(

1−
(

15
8 −

2
3(1 + 4κ)n

)
β(1−β)

((1 + 4κ)n+ 2)

)
µ

≤
(

1− 3(1−β)β
2((1 + 4κ)n+ 2)

)
µ, (5.18)
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where the last inequality follows from the fact that 15
8 −

2
3(1+4κ)n ≥

37
24 >

3
2 , where n≥ 2.

Hence, we obtained the desired result. �

The following corollary is a consequence of Theorem 5.1.

Corollary 5.1. Let n≥ 2 and β ∈ (0.9,1). Then, Algorithm 1 produces a point (xk,sk) ∈

N−∞,ϕ(1−β) =Dϕ(β) with xksk ≤ ε in at most O
(

(1 +κ)n log
(

(x0)T s0

ε

))
iterations.

It should be mentioned that Algorithm 1 depends on a given parameter κ ≥ κ̂(M)
because of the parameter γ given in (4.4). It may be difficult and expensive to find on
upper bound for the handicap κ̂(M) in case of many applications. That is why in the
following section we present a PC IPA which does not depend on κ.

6. New version of predictor-corrector interior-point algorithm

We propose a new version of the PC IPA presented in Algorithm 1, which does not
depend on κ. Firstly, we set κ = 1 and use Algorithm 1 for this value. If the algorithm
fails to produce a point in N−∞,ϕ(1−β) = Dϕ(β) with ϕ(t) =

√
t, then the current value

of κ may be too small. Hence, we double the value of κ and restart Algorithm 1 from
the last point produced in Dϕ(β). In this way, we have to double the value of κ at most
dlog2 κ̂(M)e times. This new version of the algorithm is presented in Algorithm 2.

Algorithm 2: Predictor-corrector interior-point algorithm not depending on κ
Input:
(x0,s0) ∈N−∞,ϕ(1−β), β ∈ (0.9,1);
Set κ= 1
Let µ0 = µ(x0,s0) and k = 0
ε > 0 precision value.
Output: (xk,sk) : xkT sk ≤ ε
begin

while nµ≥ ε do
(Predictor step);
x := xk, s := sk;
Step 1. Calculate affin direction from (4.2);
Step 2. Calculate the predictor steplength using (4.5);
Step 3. Calculate (xp,sp);
if µ(xp,sp) = 0 then

STOP; Optimal solution found;
else

if (xp,sp) ∈N−∞,ϕ(1−β) then
(xk+1,sk+1) = (xp,sp), µk+1 = µ(xp,sp), k = k+ 1, RETURN;

else
(Corrector step);
Step 4. Calculate centering direction from (4.7);
Step 5. Calculate centering steplenght using (4.9);
Step 6. Calculate (xc,sc);
if (xc,sc) ∈N−∞,ϕ(1−β) then

(xk+1,sk+1) = (xc,sc), µk+1 = µ(xc,sc), k = k+ 1, RETURN;
else

κ= 2κ; (xk+1,sk+1) = (xc,sc), µk+1 = µ(xc,sc), k = k+ 1,
RETURN;

end
end

end
end

end

Using Theorem 3.9 in [46] and Theorem 5.1, Corollary 5.1 we obtain the following.
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Theorem 6.1. Algorithm 2 produces a point (xk,sk)∈N−∞,ϕ(1−β) =Dϕ(β) with xksk ≤ ε

in at most O
(

(1 + κ̂(M))n log
(

(x0)T s0

ε

))
iterations.

Proof. Consider κ̄ as the largest value of κ used in Algorithm 2. Then, we have κ̄ >
2κ̂(M). Now we consider that at iteration k of Algorithm 2 we have κ < κ̂(M). If
(xc,sc) ∈ N−∞,ϕ(1−β), then (xk+1,sk+1) = (xc,sc). Using that Lemmas 5.1 and 5.2 hold
for κ= κ̂(M) and the bound on the predictor step size depends on γ which is decreasing
in κ, we obtain that

µk+1 ≤
(

1− 3(1−β)β
2((1 + 4κ̂(M))n+ 2)

)
µk ≤

(
1− 3(1−β)β

2((1 + 8κ̂(M))n+ 2)

)
µk.

Furthermore, if κ≥ κ̂(M), then the corrector step is never rejected. Hence, using Theorem
5.1 and the fact that κ≤ κ̄ < 2κ̂(M), we obtain

µk+1 ≤
(

1− 3(1−β)β
2((1 + 4κ)n+ 2)

)
µk ≤

(
1− 3(1−β)β

2((1 + 8κ̂(M))n+ 2)

)
µk.

Using that there can be at most log2(κ̄) rejections we obtain the final result. �

7. Numerical results

We implemented a variant of the proposed PC IPA in the C++ programming language.
We did all computations on a desktop computer with Intel quad-core 2.6 GHz processor
and 16 GB RAM. Due to the fact that in many cases we do not have information about
the value of κ, we used Algorithm 2 in our implementation. We set the values β = 0.95
and ε = 10−5. In spite of the fact that the complexity analysis of our PC IPA works for
β ∈ (0.9,1), in the implementation we also consider the case when β = 0.1 and we obtain
promising results.

It is important to mention that we implemented the theoretical version of the PC IPA
and followed the main steps described in Section 4. Moreover, it should be mentioned
that most of the numerical results related to P∗(κ)-LCPs are related to problems where
the value of κ is zero, that lead to LO problems. Gurtuna et al. [24] and Asadi et
al. [4] provided numerical results related to P∗(κ)-LCPs having positive handicap, by
considering 2×2 or 3×3 matrices. They also analysed block diagonal matrices formed by
the aformentioned ones. Darvay et al. [14] presented numerical results where they solved
P∗(κ)-problems with matrices having positive κ generated by Illés and Morapitiye [26].

We tested the PC IPA on LCPs with sufficient matrices given by Illés and Morapitiye
[26]. We generated the test problems in the following way: q := −Me + e. We consid-
ered x0 = e and s0 = e as starting points for our PC IPA. In our computational study
we compared our PC IPA using the function ϕ(t) =

√
t in the AET technique and the

neighbourhood N−∞,ϕ(1−β) =Dϕ(β) with the PC IPA of Potra and Liu proposed in [46],
which is based on the function ϕ(t) = t. Moreover, we also compared our IPA to the PC
IPAs presented in [14] that use the neighbourhood

N2(τ,µ) :=
{

(x,s) ∈ F+ :
∥∥∥∥∥ aϕ

2√µxs

∥∥∥∥∥≤ τ
}
, (7.1)

where aϕ = µe−xs in case of ϕ(t) = t and aϕ = 2(√µxs−xs) in case of ϕ(t) =
√
t.

Table 1 contains the average of iteration numbers and CPU times (in seconds) with
β = 0.95 for the given LCPs for each size n in case of the PC IPA proposed by Potra and
Liu [46] based on the search direction using ϕ(t) = t and in case of our PC IPA which uses
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the function ϕ(t) =
√
t in the AET technique. Table 2 contains the average of iteration

numbers and CPU times (in seconds) with β = 0.1 in case of the two aformentioned PC
IPAs. In these cases our PC IPA provided better results. In Table 3 we present the results
given in [14] that are related to PC IPAs working in the neighbourhood given in (7.1) using
the functions ϕ(t) = t and ϕ(t) =

√
t, respectively. We can see that in case of small-sized

problems the PC IPAs using the wide neighboruhoods N−∞,ϕ(1− β) = Dϕ(β) provided
usually better results, while in case of large-sized problems the PC IPAs presented in [14]
were better.

n ϕ(t) = t with Dϕ(0.95) ϕ(t) =
√
t with Dϕ(0.95)

Avg. Iter. CPU Avg. Iter. CPU
10 10.6 0.2494 9 0.2584
20 13.6 0.5852 10.4 0.7474
50 7.4 1.7070 6.2 1.7478
100 9.8 8.8782 8.2 8.4858
200 11.2 31.4722 9 36.4954
500 14.2 258.7558 11.2 272.2758
700 16 534.0890 13 612.9010

Table 1. Numerical results with β = 0.95 for P∗(κ)-LCPs from [26] having
positive handicap.

n ϕ(t) = t with Dϕ(0.1) ϕ(t) =
√
t with Dϕ(0.1)

Avg. Iter. CPU Avg. Iter. CPU
10 4.8 0.1144 4.6 0.0978
20 5.4 0.2420 5.2 0.2276
50 4 0.9790 4 1.0752
100 4.4 3.7110 4.4 4.2046
200 5.2 14.8130 5.2 19.8456
500 5.6 93.2230 5.8 130.0336
700 6 195.2880 6 276.3360

Table 2. Numerical results with β = 0.1 for P∗(κ)-LCPs from [26] having
positive handicap.

In Table 4 we compare our PC IPA to the PC IPA proposed by Liu and Potra [46] and to the
IPAs tha uses the neighbourhood appeared in (7.1) in case of five 10×10 sized problems from
[26] with β = 0.95 and β = 0.1, respectively. We can see that in case of β = 0.1 we obtained
better results in case of both PC IPAs.

De Klerk and E.-Nagy [18] proved that the handicap of the matrix can be exponential in the
size of the problem. They considered the following matrix which was proposed by Csizmadia:

M =


1 0 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 · · · 0
...

...
... . . . ...

−1 −1 −1 · · · 1

 , (7.2)
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n ϕ(t) = t with N2(τ,µ) ϕ(t) =
√
t with N2(τ,µ)

Avg. Iter. CPU Avg. Iter. CPU
10 23.9 0.024 25.7 0.026
20 6.1 0.037 8.0 0.050
50 5.1 0.317 5.1 0.317
100 5.4 2.212 5.4 2.216
200 5.8 17.564 6.0 18.165
500 6.2 279.968 6.4 288.993
700 7 898.662 7 899.404

Table 3. Numerical results given in [14] for P∗(κ)-LCPs from [26] having
positive handicap.

ϕ(t) = t with
Dϕ(0.95)

ϕ(t) =
√
t

with Dϕ(0.95)
ϕ(t) = t with
Dϕ(0.1)

ϕ(t) =
√
t

with Dϕ(0.1)
ϕ(t) = t with
N2(τ,µ)

ϕ(t) =
√
t

with N2(τ,µ)
MGS_10_1 18 16 7 6 9 9
MGS_10_2 13 10 5 6 7 14
MGS_10_3 8 7 4 6 72 86
MGS_10_4 17 13 6 4 7 9
MGS_10_5 16 14 7 6 50 11

Table 4. Numerical results for P∗(κ)-LCPs from [26] having positive handicap.

and they proved that κ̂(M)≥ 22n−8−0.25. However, we obtained promising results in this case
as well. In this case we also compared our PC IPA with the IPA from [46]. The results are
summarized in Tables 5 and 6.

n ϕ(t) = t with Dϕ(0.95) ϕ(t) =
√
t with Dϕ(0.95)

Nr. of Iter. CPU (s) Nr. of Iter. CPU (s)
10 21 0.273 18 0.291
20 19 0.515 18 0.470
50 26 1.975 27 2.804
100 39 12.817 38 14.921
200 66 88.064 67 87.512
300 97 240.758 95 327.764
400 122 521.747 121 685.074

Table 5. Numerical results with β = 0.95 for P∗(κ)-LCPs with matrix
given in (7.2)

M. E.-Nagy generated randomly P∗(κ) matrices of different sizes from n= 3, . . . ,10, see [16].
We tested our PC IPA in these cases as well and we compared our algorithm to the PC IPA of
Potra and Liu [46]. The results are summarized in Table 7. It can be observed that in these
cases the two PC IPAs using different search directions provide similar results.

Beside this, M. E.-Nagy also generated non-sufficient matrices of different sizes from n =
3, . . . ,10, see [16]. We tested our PC IPA in these cases as well and we obtained promising
results, which shows that this PC IPA can be used for solving more general LCPs as well. The
results are presented in Table 8.
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n ϕ(t) = t with Dϕ(0.1) ϕ(t) =
√
t with Dϕ(0.1)

Nr. of Iter. CPU (s) Nr. of Iter. CPU (s)
10 8 0.154 7 0.081
20 10 0.297 9 0.248
50 16 1.892 15 1.601
100 25 11.02 24 10.356
200 47 72.755 43 69.919
300 66 174.835 63 227.014
400 87 406.000 82 531.613

Table 6. Numerical results with β = 0.1 for P∗(κ)-LCPs with matrix given
in (7.2)

n ϕ(t) = t with Dϕ(0.95) ϕ(t) =
√
t with Dϕ(0.95)

Avg. Iter. CPU Avg. Iter. CPU
3 6.4 0.0634 4.8 0.0528
4 4.6 0.0576 4.2 0.0502
5 6.6 0.0942 5.6 0.0784
6 6.8 0.0948 5.6 0.0938
7 7.6 0.1162 6.0 0.1016
8 7.8 0.2132 6.2 0.1254
9 6.8 0.1274 5.8 0.1312
10 9.0 0.1952 7.0 0.1712

Table 7. Numerical results for P∗(κ)-LCPs from E.-Nagy having positive handicap.

n ϕ(t) =
√
t with Dϕ(0.95) ϕ(t) =

√
t with Dϕ(0.1)

Avg. Iter. CPU Avg. Iter. CPU
3 6.0 0.0582 3.4 0.0318
4 6.0 0.0708 3.4 0.0428
5 6.2 0.0930 3.4 0.0502
6 5.6 0.0972 3 0.0520
7 6.8 0.1104 3.2 0.0574
8 5.8 0.1064 3.6 0.0694
9 6.4 0.1356 3.6 0.0752
10 9.4 0.2512 4.8 0.1118

Table 8. Numerical results with ϕ(t) =
√
t for non-sufficient LCPs from E.-Nagy.

In the following section some concluding remarks are presented.

8. Conclusion

In this paper we proposed a new PC IPA for solving P∗(κ)-LCPs. The proposed IPA de-
termines the new search directions by using the function ϕ(t) =

√
t in the AET technique and
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works in a new wide neighbourhood. We proved that the PC IPA has O
(

(1+κ)n log
(

(x0)T s0

ε

))
iteration complexity. We also provided numerical results where we compared our PC IPA to
other ones that use different search directions or neighbourhoods. We also tested our PC IPA
on LCPs, where the matrices are not sufficient and we obtained promising results. This leads
to further research topic, because it shows that the PC IPA using this search direction can be
used for solving general LCPs as well.
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